

From last meetings: SPACAL design implementation in Geant4

- Enabled with new branch 2DSpacal:
 - In nightly build, but not used by default
 - https://github.com/sPHENIX-Collaboration/macros/pull/2
 - https://github.com/sPHENIX-Collaboration/coresoftware/pull/19
 - Activated with this flag in Fun4All_sPHENIX.C

```
Cemc_spacal_configuration =
PHG4CylinderGeom_Spacalv1::k2DProjectiveSpacal;
```


Towers project towards IP

Stainless steel SS310 Support box

Gap between modules are also implemented

- 300um tolerance outside super modules skins
- ~2mil between SPACAL and SS skin.
- ~2mil between SPACAL modules

2x2 2D tapered SPACAL modules

in Huang <jihuang@bnl.gov>

Simulation Meeting

Recent updates

- Chris produced first few test productions:
 - /gpfs02/phenix/prod/sPHENIX/preCDR/pro.1-beta.2/spacal1d
 - /gpfs02/phenix/prod/sPHENIX/preCDR/pro.1-beta.2/spacal2d
- Implementation of analyzing Geant4 data in tower structures as built:
 - Tag hits in SPACAL output with sector/tower/fiber IDs.
 - Add a cell builder to group hit in each 10M SPACAL fiber separately in each cell (which allow us to implement fiber-fiber light collection eff. when needed)
 - Update tower builder to take SPACAL cells and collection light yield from each cell.
- Submitted to use in production: <u>https://github.com/sPHENIX-</u> <u>Collaboration/coresoftware/pull/29</u>

Test beam comparison 1

- One of the long last concern is lack of beam test calibration for our simulation
- Obtained eRD1 2014 beam test geometry and data with many help from Oleg Tsai, Alex Kiselev and Craig Woody
- Implemented in Geant4

SPACAL prototypes in 2014 Fermilab beam test

Courtesy: O. Tsai (UCLA)

Test beam comparison 2: 8 GeV electron shower in Geant4

Implementation in Geant4 relatively straightforward with the new engineering based setup

Side view (non-tapered side)
~= Z vs R view

Side view (tapered side) = beam axis view

Test beam comparison 3: More detailed views of fiber matrix

Test beam comparison 4: 8 GeV electron shower in Geant4 VS data

Full Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Not yet applied: SiPM noise, photon fluctuation, fiber/fiber response

Photon analysis and Clusterizer choice

- Discussed possible photon Clusterizer with Stefan Bathe and Megan Connors
- Fast pre-CDR solution for photon performance in HI
 - Trying Sasha's PHENIX clusterizer
 - Ideal clustering (group tower around truth photon track)
 - Try FastJet with R = Mollie radius?
- Long term, construct an official pacakge?
 - CMS island algorithm (Thanks to Stefan and Yen-Jie Lee (MIT)): https://cds.cern.ch/record/687345/files/note01 034.pdf
 - Alice algorithm
 - General purpose package?
 - More volunteers?

Pre-CDR plots

- Single particle (e/mu/pi/p/gamma/pi0)
 - Line shapes [Jin]
 need to finish test beam setup
 - Linearity [Jin]
 need new production with towering
 - Energy resolution [Jin] <- need new production with towering
 - Sampling fraction [Jin]<- ready to produce plot with test production
 - Dynamic range [Jin] <- need new production with towering
- Au+Au HIJING embedded
 - Underlying event energy and fluctuation [Jin]
 need new production with towering
 - Rejection vs efficiency for electrons [Jin]
 need new production, verify track proj. tools
 - Photon resolution [Stefan and Megan]
 - <- need new production, decide the clusterizer
- ▶ EM energy trigger performance
 - Turn-on curve [Jin] <- need new production, improve last tools

